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Executive Summary 

This report describes and illustrates the use of the routine MaxFits. This 
routine estimates statistics of extremes corresponding to arbitrary dynamic 
load or response processes. It estimates statistics of extremes from limited- 
duration time histories, which may arise either from experimental tests or 
computationally expensive simulation. A wide range of statistics—e.g., mean, 
standard deviation, and arbitrary fractiles—can be estimated for an extreme 
over an arbitrary duration T. The routine also assesses, through boot- 
strapping methods, the statistical uncertainty associated with these extremal 
statistics due to the amount of data at hand. This will consistently reflect the 
growing uncertainty as, for example, we extrapolate to (1) increasingly high 
fractiles of the extreme response; or (2) increasingly long target durations T, 
relative to the length of the input signal. 

Central to this routine is a core group of algorithms used to probabilis- 
tically model various aspects of the dynamic process of interest. The user is 
permitted to model either the time history itself, a set of local peaks (max- 
ima), or a coarser set of global peaks (e.g., 5- or 10-minute maxima). A 
number of distribution types are included for these various purposes. For 
example, normal distributions and their 4-moment transformations ("Her- 
mite") are included as likely candidates to apply directly to the process itself. 
Weibull models and their 3-moment distortions ("Quadratic Weibull") have 
been found particularly useful in modelling local peaks and ranges. Extremal, 
Gumbel models are also included to permit natural choices of global peaks. 
These algorithms build on the distribution library of the FITS routine, most 
recently documented in RMS Report 38 (Manuel et al, 1999). 

To focus on upper tails of interest, the user can also supply an arbitrary 
lower-bound threshold, xlow, above which a shifted version of a positive ran- 
dom variable model—exponential, Weibull, or quadratic Weibull—is fit. In 
estimating statistics of the maximum response, the program automatically 
adjusts for the decreasing rate of response events as the threshold xtow is 
raised. 

This program is intended to be applicable to general cases of dynamic re- 



sponse. A particular example shown here concerns the estimation of extreme 
bending moments experienced by wind turbine blades under stationary Gaus- 
sian random field simulations. This is a topic of ongoing interest within the 
general wind turbine community. It is shown here how the use of the fitted 
models provided in MaxFits can produce accurate estimates—in comparison 
with extensive simulation results—with reduced data needs. 
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1    Introduction 

1.1    Background and Motivation 

This report describes and illustrates the use of the routine MaxFits. This 
routine estimates statistics of extremes corresponding to arbitrary dynamic 
load or response processes. It estimates statistics of extremes from limited- 
duration time histories, which may arise either from experimental tests or 
computationally expensive simulation. A wide range of statistics—e.g., mean, 
standard deviation, and arbitrary fractiles—can be estimated for an extreme 
over an arbitrary duration T. The routine also assesses, through boot- 
strapping methods, the statistical uncertainty associated with these extremal 
statistics due to the amount of data at hand. This will consistently reflect the 
growing uncertainty as, for example, we extrapolate to (1) increasingly high 
fractiles of the extreme response; or (2) increasingly long target durations T 
(relatively to the length of the input signal). 

Typical problems that motivated this study include the statistical anal- 
ysis of extreme wave and wind loads/responses, based on limited data from 
either model or field tests. Of particular interest here is the prediction of 
extreme bending moments experienced by wind turbine blades under station- 
ary Gaussian random field simulations. This is a topic of ongoing interest 
within the general wind turbine community. An extended discussion of a 
wind turbine example is shown in Chapter 3. Chapter 4 shows the practical 
details of applying MaxFits in the wind turbine context. In particular, it 
is shown how the use of the fitted models provided in MaxFits can provide 
accurate estimates—in comparison with extensive simulation results—with 
reduced data needs. Note also that a complementary offshore application of 
MaxFits, to the extreme offset motions of a floating "spar buoy" structure, 
has been published in an earlier report (De Jong and Winterstein, 1998). 



1.2    Problem Statement: What We Seek 

In general, we focus here on the extreme value Xmax of a random process 
X(t), over a duration T that reflects the stationary duration of the event of 
interest: 

Xmax = maxX(t);   0<t<T (1) 

Minimum values can generally be estimated in turn by replacing X(t) by 
—X(t), 1/X(t), or another appropriate transformation. "Two-sided" max- 
ima, e.g. of |A(£)|, are less directly handled unless symmetry arguments can 
be applied; e.g., treating max \X\ over duration T as statistically equivalent 
to max A' over duration 2T. 

Because Xmax will vary in a random fashion over various histories of 
duration T, we seek various statistics of Xmax. A first central measure is given 
by its mean value, ßxmax- If we supplement this by its standard deviation, 
(JXmax ■ we have sufficient information to fit a fairly general, two-parameter 
distribution function to Xmax. Alternatively, we may directly seek various 
fractiles, xp, defined so that 

P[Xmax <Xp]=p for fixed p (2) 

Here the probability level, p, is specified and the consistent fractile xp is 
sought. For example, with p=0.50, x.50 is a representative or "median" level, 
which is equally likely to be exceeded or not in a given duration T. Upper 
fractiles of x may be useful to report to cover response variability; for exam- 
ple, it has recently been suggested that the p=.85 or .90- fractile response 
maximum provides a useful estimate, when used with the 100-year seast- 
ate, to predict the 100-year response (Engebretsen and Winterstein, 1998; 
Winterstein and Engebretsen, 1998). 

Finally, we also may invert Eq. 2; i.e., seek the probability level p for 
which a specified x is not exceeded: 

P[Xmax < x] = p for fixed x (3) 

The MaxFits routine permits the user to obtain statistics in the form of 
either Eq. 2 or Eq. 3. 



1.3    Problem Methodology: What We Model 

We may seek to model a random process at a variety of different time scales. 
We begin here at the finest time scale, and proceed to increasingly global 
time scales. 

Model of the. entire process, X(t). At the finest time scale, we may seek 
to model the cumulative distribution function (CDF) Fx(x) of the ran- 
dom process x(t) selected at arbitrary time t: 

Fx(x)=P[X(t)<x] (4) 

In the most common case X(i) is assumed Gaussian, in which case 
Fx {x) can be evaluated numerically in terms of only the mean \xx and 
standard deviation ax of the process X(t): 

Fx{x)=s(l^L) (5) 
\    ax    / 

in which $(u) is the standard normal distribution function. 

Model of local peaks, Y. We may instead choose to ignore all points of 
the time history except its local peaks, typically defined as the largest 
peak per upcrossing of the mean level. For a narrow-band normal pro- 
cess, this results in a Rayleigh distribution for Y, which again depends 
only the mean fxx and standard deviation aX' 

FY{y) = 1-exp 
(a; - fix)'' 

2al 
(6) 

for y > 0 only. 

Model of global peaks, Z. Finally, we may instead choose the maximum 
value Z over a still coarser time scale, which comprise multiple local 
peaks (e.g., 10-minute maxima, 1-hour maxima). As when proceeding 
from the process to local peaks, this step has the advantage of focus- 
ing more locally on the upper tail of interest, and the corresponding 
disadvantage of using less detailed information about the time history. 



In generally, the distribution function of Z is commonly estimated from 
that of Y as follows: 

Fz(z) = [FY(z)]N (7) 

in which N here is the number of local peaks (Y values) within the duration 
over which Z extends (again, 10 minutes, 1 hour, etc.) Eq. 7 assumes both 
that the number of peaks, N, is deterministic and that their levels are mu- 
tually independent. Neither assumption is strictly correct, but corrections 
generally become insignificant as we consider extremes in the upper tails of 
the response probability distribution. 

In the Gaussian case, combining Eqs. 6-7 yields the result 

Fz{z)   = 

exp(-JVe-(*-^)2/2^) (8) 

The MaxFits routine permits the user to select both which quantity is di- 
rectly input—X(t), Y, or Z—and also to choose which quantity is to be 
probabilistically modelled: either X(t), Y, or Z. As noted below, in the 
special case when the entire process X(t) is to be modelled, we permit only 
a single, "Hermite" distribution model. 

The various distributions available within MaxFits are described in sub- 
sections that follow. Once estimated, FY(y) or Fz(z) can be used to estimate 
the distribution of Xmax in Eq. 1, in a manner analogous to Eq. 7: 

FXmax(x) = P[Xmax < x]   =   [FY(x)]N- (9) 

=   [Fz(x)]N* (10) 

If FY has been fit we use Eq. 9, in which Ny is the number of local peaks 
expected in time T. If Fz has instead been fit we use Eq. 10, in which Nz is 
the number of global peaks (e.g., number of 10-minute or 1-hour segments) 
in time T. 

The mean and standard deviation, jJLXmax and aXmax, corresponding to 
the distribution of Xmax given above is found in MaxFits by numerical inte- 
gration, using Gaussian quadrature procedures. 



1.4    Uncertainty Estimates through Bootstrapping 

Finally, bootstrapping methods (e.g., Efron and Tibshirani, 1993) are used 
here to estimate the statistical uncertainty associated with any/all of our 
estimated statistics of Xmax. The method is conceptually straightforward, 
generating multiple "equally likely" data sets by simulating, with replace- 
ment, from the original data set. Thus some of the data values will be re- 
peated multiple times, while others will be omitted, in any single bootstrap 
sample (which is of the same size as the original data set). The same esti- 
mation procedure performed for the original data set is repeated for each of 
the bootstrapped samples, and the net statistics on the results are collected 
and reported. 

The bootstrap method is "non-parametric" by definition, in that it oper- 
ates with no additional information beside the actual data values. Alterna- 
tive approaches might fit a parametric model, either statistical or physical, 
to generate additional "equally likely" samples from which to infer sampling 
variability levels. Such approaches may confer advantages in some cases but 
are generally problem-specific; the bootstrap method is adopted here primar- 
ily due to its virtue of generality. 

1.5    Distribution Fitting: Relation to Other Algorithms 

Central to this routine is a core group of algorithms used to probabilistically 
model various aspects of the dynamic process of interest noted above: the 
process X, its local peaks Y, or its global peaks Z. The set of distribution 
types available are, with the sole exception of the 4-moment Hermite model, 
the same as those available in the routine FITS, as documented most recently 
in RMS Report 38 (Manuel et al, 1999). Again apart from the Hermite case, 
this distribution set was chosen to provide relatively robust fits, preserving 
two or at most three moments. 

In this sense, both FITS and MaxFits are intended to complement the pre- 
viously distributed routine, FITTING, documented in RMS Report 14 (Win- 



terstein et al, 1994). The FITTING routine implements relatively complex, 
four-moment distribution models, whose parameters are fit with numerical 
optimization routines. While these four-moment fits can be quite useful and 
faithful to the observed data, their complexity can make them difficult to 
automate within standard fitting algorithms, and repeated application over 
sets of bootstrapped samples. As noted above, however, we do include the 
4-moment Hermite distribution as implemented in FITTING, in view of its 
growing use in a variety of applications. 

To focus on upper tails of interest, the user can also supply an arbitrary 
lower-bound threshold, X[ow, above which a shifted version of a positive ran- 
dom variable model—exponential, Weibull, or quadratic Weibull—is fit. (In 
estimating statistics of the maximum response, the program automatically 
adjusts for the decreasing rate of response events as the threshold xlow is 
raised.) 



1.6    Available Distribution Types 

Specific distributions currently included in MaxFits to estimate Fi(x) include 
the following, as catalogued by the distribution index IDIST: 

IDIST=1: 

IDIST=2 

IDIST=3 

IDIST=4 

IDIST=5 

IDIST=6 

IDIST=7 

IDIST=8 

IDIST=9 

Normal Distribution 

Lognormal Distribution 

Exponential Distribution 

Weibull Distribution 

Gumbel Distribution 

Shifted Exponential Distribution 

Shifted Weibull Distribution 

Quadratic Weibull Distribution 

Shifted Quadratic Weibull Distribution 

IDIST=10: Four-Moment Hermite Distribution 

IDIST=11: Hermite Distribution Model of Peaks, based on four moments of 
the underlying process 

The distributions IDIST=1 through 5 and 8 are all fit to statistical moments 
of all available data. The single-parameter exponential preserves only the 
mean mx of the data, while the normal, lognormal, Weibull, and Gumbel 
preserve both the mean and standard deviation ax estimated from the data. 
The quadratic Weibull preserves the first three moments of the data (mean, 
standard deviation, and skewness). The Hermite model (IDIST=10) is per- 
haps the most general, seeking to preserve the first four moments of the data 
(mean, standard deviation, skewness, and kurtosis). The Hermite model of 
peaks (IDIST=11) is special, in that it takes as input the first four moments 



of the underlying random process X(t), and provides a consistent distribution 
of the local peaks Y. 

Most of the one-sided distributions above (exponential, Weibull, and 
quadratic Weibull) are also generalized here by shifting (IDIST=6, 7, and 
9). These impose a user-defined lower threshold xiow, ignore data below Xiow, 
and fit standard exponential/Weibull/quadratic Weibull models to x - xiow 

based on observed moments. These are perhaps the most relevant distribu- 
tions when modelling local peaks, Y, which generally have a broadly skewed 
distribution away from a well-defined lower bound. 

The result aims to provide the user with a suite of smooth probability 
models, to be fit throughout the body of the available data. It does not 
directly address various special topics of data fitting; e.g., selective tail fit- 
ting, fitting bimodal models to hybrid data, etc. Some of these issues can 
be addressed, in a limited way, through the use here of the shifted mod- 
els (IDIST=6, 7, and 9). In this way the user can focus the distribution 
modelling resources on the extreme response levels of interest. 

More specific tail-fitting procedures have not been given here, because 
optimal use of these may be rather problem-specific. In the same vein our 
extremal models are limited here to so-called "Type I" behavior, leading 
to (shifted) exponential distributions of peaks over a given threshold and 
to Gumbel distributions of annual maxima. Type II and III distributions 
are ill-suited to our moment fits, due to potential moment divergence (Type 
II) or to the difficulty in predicting truncated distributions (Type III) from 
moment information. 

1.7    Limitations 

An important limitation arises when the user seeks to model the entire pro- 
cess X(t), as opposed to directly modelling its local peaks, Y, or its global 
peaks, Z. (As discussed in section 4.1, this choice is made by choosing the 
input parameter DATASWITCH=1.) In this case, MaxFits requires a model of 
local peaks, Y, whose distribution is consistent with moment statistics of 



the random process X(t). The only such distribution available in MaxFits 
for this purpose is IDIST=11; i.e., a model of local peaks consistent with a 
four-moment cubic ("Hermite") transformation of a Gaussian process. As a 
result, if the user selects DATASWITCH=1, the routine automatically forces the 
distribution choice IDIST=11. 

Also, in this case when the user models the entire process X(t), we do 
not permit the bootstrapping option, as this would distort the time-scale of 
variation of X(t) if its values were merely sampled with replacement over the 
time-axis. 

Finally, MAX, the maximum number of data, has been set to 45000. 
This has been set in a PARAMETER statement in the main driver program 
to MaxFits. This is a rather arbitrarily selected limit, and can be reset by 
the user without fundamental consequence. 



2    Distribution Fitting: Routines 

The routine MaxFits has been separated into three files containing Fortran 
source code: maxf .f contains the main program, aux_fits.f contains aux- 
iliary subroutines used by FITS, and aux.maxf.f contains all additional sub- 
routines used by MaxFits. 

Specifically, the fitting algorithm includes the following set of subroutines, 
contained in aux_fits.f: 

CALMOM: Estimates the mean mx, standard deviation ax, skewness as and 
kurtosis a4 from an input set of data. These are based on unbiased 
estimates of the cumulants ki=mx, k2=o-x, k3=a3al, and /c4=(a;4—3)ax. 
If the user includes an optional lower limit X[ow, moments of the shifted 
variable (x — xiow)+=m&x(0,x — xiow) are estimated. 

DISPAR: Based on the sample moments estimated in CALMOM, DISPAR seeks 
a consistent set of distribution parameters. The interpretation of these 
parameters depends on the distribution type selected by the user. Ap- 
pendix A includes a complete listing of the distribution functions and 
their parameters. 

GETCDF: For the user-defined distribution type with the distribution param- 
eters from DISPAR, this routines estimates the cumulative distribution 
function value, F(x)=P[Outcome < x] for given input x value. 

FRACTL: For the user-defined distribution type with the distribution param- 
eters from DISPAR, this routines estimates the fractile x corresponding 
to a specified input value of the probability p=F(x)=P [Outcome < x). 

QDMOM: Uses Gaussian quadrature to estimate the first four moment of the 
theoretical fitted distribution. These can be compared with the sample 
moments from the data, as given by CALMOM, to verify the accuracy of 
the fitted model—and in the case of the higher moments not used in 
the original fitting, to test its accuracy. 

10 



The routines GETCDF and FRACTL, which supply general distribution func- 
tions and their inverses, may also be useful in other stand-alone applications; 
e.g., to create a distribution library for standard FORM/SORM or simulation 
analyses (Madsen et al, 1986), or for use with new Inverse FORM algorithms 
(Ude and Winterstein, 1996). 

The additional subroutines contained in aux.maxf.f are as follows: 

DATAPREP: Prepares the data for the analysis. The user specifies whether 
the input data represent the entire process X(t), the local peaks Y, 
or the global peaks Z. DATAPREP selects, from the input information, 
the appropriate data values to be retained for purposes of probabilistic 
modelling/fitting. 

DISTINT: Finds the mean and standard deviation, \ixmax 
ancl °xmax, of the 

maximum value Xmax by numerical integration, using Gaussian quadra- 
ture methods. 

RESAMP: Generates a new, "equally likely" dataset of the same size from the 
original data by sampling with replacement. This is used to produce 
bootstrap estimates of the standard deviation of our estimates. 

CALCRES: Handles administrative work involved with bootstrapping, such 
as keeping track of running sums, etc. 

11 



3    Estimating Extreme Loads on Wind Tur- 
bines 

This chapter considers how the foregoing probability models can be applied 
to estimate extreme bending loads on wind turbines. The database we use 
contains multiple 10-minute simulations of Gaussian wind fields, and corre- 
sponding in- and out-of-plane bending moment loads on a specific horizon- 
tal axis wind turbine (the Aerodynamics Experiment Phase III turbine; see 
Madsen et al, 1999 and its associated references). The turbine has a rotor 
diameter of 10m and a nominal rotor speed of 1.2 Hz. It is a three-bladed 
turbine with a hub height of 17m. 

A total of 100 10-minute simulations have been performed for various 
choices of the mean wind speed V. These use a general-purpose, commercially 
available structural analysis code (ADAMS), linked with special-purpose rou- 
tines to estimate aerodynamic effects (Hansen, 1996). We focus here on three 
cases: 

1. l^=14m/s, typical of nominal or "rated" wind conditions; 

2. T/=20m/s, the maximum or "cut-out" wind speed at which the turbine 
operates; and 

3. V=45m/s, an extreme wind speed (e.g., 50-year level) during which 
the turbine is parked. 

The last case is somewhat analogous to extreme winds on buildings and 
other stationary structures, and we may expect similar statistical behavior 
in this wind turbine analysis. The lower-speed cases, however, correspond 
to operating conditions, in which the turbine blades rotationally sample the 
stationary wind field. Also notable here are the systematic effects of gravity 
on in-plane bending: a strong sinusoidal trend is induced at the turbine 
operating speed. We investigate here whether various probabilistic response 
models can remain accurate in the face of these special features that wind 
turbines exhibit. 

12 



In particular, we study here the behavior of two different types of proba- 
bilistic models: (1) Hermite models, which seek to statistically characterize 
the entire random process history by a limited set of its moments; and (2) 
quadratic Weibull models, which seek to statistically characterize only the 
process peaks over a specified threshold (in this case, through corresponding 
moments of these peak values). Recall that the MaxFits routine implements 
both types of models. 

3.1    Numerical Results 1: Sample Time Histories and 
Correlations 

Figure 1 shows simulated wind and load time histories from one 10-minute 
simulation. The uppermost figure shows the entire wind input; the remaining 
three show enlarged, 10-second portions of the wind and load histories during 
which the wind input is maximized. (This maximum wind episode does not 
generally produce the maximum bending loads.) 

To identify peaks from the response histories, we define a peak here as 
the largest value of the history between successive upcrossings of its mean 
level. Figure 1 shows the mean levels of each history by horizontal lines, and 
the circled response points indicate the set of peaks that are obtained. The 
out-of-plane (flap) bending loads are found here to roughly follow the wind 
speed process, although additional high-frequency content is observed. Note 
also that our definition of peaks (largest response per upcrossing of the mean) 
serves to filter out many of these high-frequency response oscillations. The 
edge bending loads are of less interest in this case, showing small oscillations 
about the mean load. 

Figure 2 shows similar simulated wind and load time histories, now from 
a wind speed V=20m/s during which the turbine is operating. Now the 
effect of gravity is clearly seen in the edge bending history, which shows 
a strong sinusoidal component at the operating speed of roughly 1.2 Hz. 
The flap bending history also shows systematic variations at this frequency, 
although it is combined with significantly larger high-frequency content here 

13 



than in the edgewise case. Again, our peak identification method removes 
some of this high-frequency effect. Note in the edgewise case, however, that a 
somewhat anomalous effect can arise. While only one "large amplitude" peak 
is usually found per blade revolution, other "secondary", near-zero peaks 
are sometimes also identified. This arises from the high-frequency small- 
amplitude oscillations shown by the edgewise loads about their mean level. 
The resulting distribution of all peaks is found in such cases to be bimodal; 
i.e., to possess a probability distribution model with several distinct regions 
of relatively high probability ("modes"). Because our models are unimodal— 
i.e., designed to be fit to the single most important probability "mode"—we 
shall find it useful in these edgewise cases to pass a higher threshold (above 
the mean) to exclude these secondary peaks. We shall return to this issue in 
the next section. 

Finally, recall that to estimate the distribution of the largest peak, it is 
common to assume that successive peaks are mutually independent. This is 
the assumption inherent in our current implementation of MaxFits (see, for 
example, Eq. 7). To test this assumption, Figures 3 through 6 show scatter- 
plots of (Yk,Yk+i), i.e., all pairs of adjacent peaks Yk and Yk+i. It is clear 
from the plots, and the reported correlation coefficients they contain, that the 
assumption of independence should not induce large modelling errors in this 
application. This conclusion may differ in other applications; for example, 
the lightly damped slow-drift response of some moored marine structures. 

3.2    Numerical Results 2: Observed vs Predicted Dis- 
tributions of Peaks 

We now test the ability of a three-moment, quadratic Weibull distribution 
to accurately model the simulated response peaks across various wind con- 
ditions. For illustration purposes, we again show results for the first (of the 
100) 10-minute simulations. (A sample input and output file, described in 
the next chapter, illustrates the use of MaxFits to derive some of the results 
shown here.) 

14 



We again consider first the parked turbine (F=45m/s), whose statistical 
behavior may be expected to be most well-behaved. Figure 7 shows the 
cumulative probability distribution function FY(y)=P[Y < y] of all peaks, 
as estimated directly from the data. Specifically, for both flap and edge cases, 
the peaks y{ are first ordered so that y\<y<i< ...<yn, and associated with 
the cumulative probabilities Pi=FY{yi)=i/(n + 1). Results are plotted on a 
distorted "Weibull" scale, which plots y not versus FY(y) but rather versus 
- ln[l - FY{y)]. The results, when viewed on log-log scale, should appear as 
a straight line if the data follow a Weibull probability distribution model. 

The data here show slightly positive curvature on this Weibull scale. This 
suggests the value of the quadratic Weibull model, which yields a quadrat- 
ically varying distribution when plotted on the Weibull scale of Figure 7. 
This quadratic model is shown here to accurately follow both the flap and 
edge load data in this case. 

Figure 8 shows similar Weibull scale plots of flap and edge loads in the 
F=20m/s case, during which the turbine is rotating. While the distribution 
of flap load peaks remains smooth, the distribution of edge load peaks shows 
a sharp change in behavior, with a "corner" located at roughly y=\. This is 
a consequence, of the bimodal character of the edge load peaks, as discussed 
earlier. No smooth, single-moded distribution model can capture both the 
large, one-per-revolution primary peaks and the small-amplitude, secondary 
peaks. For both ultimate and fatigue load modelling purposes, however, 
these secondary peaks are of little consequence. We therefore seek to model 
the shifted peaks, Y - 1.5; i.e., we remove all peaks below 1.5, and report 
the shifted values y'~yi - 1.5 of the remaining peaks. The shifting is used to 
conform with quadratic Weibull models, which generally assigns probability 
to all outcomes y' > 0. Figure 9 shows the quadratic Weibull model to 
accurately follow the shifted edge loads, Y - 1.5. (Note that the optimal 
choice of shift parameter may require some trial and error; e.g., comparing 
goodness-of-fit measures. This is a topic of ongoing study. Note also that in 
using these models to predict extremes, the shift value must eventually be 
reinstated, to report loads in units consistent with their input values. This 
is done automatically in the MaxFits routine). 
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3.3    Numerical Results 3: Estimating 10-Minute Mean 
Maxima 

Finally, we show predicted statistics of Z=max[x(t)], the maximum response 
over a 10-minute period. In particular, we seek here to estimate mz, the 
mean value of Z to be expected in an arbitrary 10-minute period. A simple, 
"raw" estimate of mz can be found by averaging the 100 observed maxima, 
Zi, from each of the 10-minute simulations: 

1     100 

z = — YZi -     ■        (li) 
100 fri 2=1 

Alternatively, we can estimate mz by fitting one of the foregoing models; e.g, 
a quadratic Weibull model to all response peaks (perhaps above a shifted 
level). Here we fit such models separately to each of the 100 simulations. 
Denoting ßi as the estimated value of mz from simulation i (z=l,...,100), we 
may form an analogous average of these estimates: 

-.     100 

*=IööI> <12) 

One advantage of the simple, "raw" estimate Z is that it is always "unbi- 
ased"; i.e., correct on average. A potential disadvantage is that because it is 
based on only the single observed maximum in each 10-minute history, it may 
show considerable variability. By instead fitting probability models to form 
estimates fi, we hope to achieve results that (1) remain nearly unbiased and 
(2) show reduced scatter (specifically, standard deviation) compared with 
the raw estimate Z. To quantify these effects we define two factors: a bias 
factor, defined as _ 

Bias (B)  = | (13) 

and a sigma reduction factor, defined as 

Sigma Reduction (SR)  = ^ (14) 
oz 

We hope to achieve bias factors of nearly unity, and sigma reductions far less 
than unity. 
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Figures 10 and 11 show bias and SR factors, respectively, for the parked 
turbine (F=45m/s). Three probability models are fit: a 3-moment quadratic 
Weibull model ("Peak Unshifted"), and both 3- and 4-moment Hermite mod- 
els of the complete random response process x(t). (The four moment model 
has become the option of choice for general use. The three-moment sim- 
plification has been used in some mildly nonlinear wave applications, and 
has been recently been derived independently for wind turbine applications 
(Madsen et al, 1999)). Note that all models yield roughly unbiased results 
(B near 1.0). The 3-moment models generally achieve a sigma reduction of 
0.5 or less. As might be expected, inclusion of the 4th moment, with its 
attendant uncertainty, leads to higher values of aß and hence SR. 

Figures 12-15 show analogous bias and SR factors for the operating wind 
speed conditions, F=20m/s and 14m/s. Here the random process (Hermite) 
models, which are intended to model rather general stochastic behavior, fail 
to accurately capture the rotating nature of the blade response. Biases of 
about 10% are found from conventional (4-moment) Hermite models, with 
considerably larger biases produced by the simpler 3-moment Hermite mod- 
els. 

In contrast, the quadratic Weibull ("Peak") models remain essentially 
unbiased in all cases. For cases of edge loads, models have been fit both to 
the original data y{ ("Unshifted") and the shifted data y{ - 1.5 ("Shifted"). 
For this particular choice of duration (T=10-minute maxima), even the un- 
shifted models appear reasonably accurate. Over longer durations, however, 
estimates become increasingly tail-sensitive, and the use of the shift has been 
found more beneficial in avoiding bias. Note, also, that as in the parked case, 
sigma reductions for these peak models all remain at roughly 0.5 or less. 

3.4    Summary 

This chapter has demonstrated the use of both random process and random 
peak models to estimate extreme wind turbine loads. In particular, it has 
applied 3-moment random peak models (quadratic Weibull), and 3- and 4- 
moment random process models (Hermite). Both the quadratic Weibull and 
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(4-moment) Hermite models are available within MaxFits. A sample input 
and output file, described in the next chapter, illustrates how the routine can 
be used to derive some of the results shown here. 

For a parked wind turbine experiencing 50-year winds, all models have 
been shown to be nearly unbiased (Figure 10) and to achieve a significant re- 
duction in our uncertainty (Figure 11) in estimating mz, the mean 10-minute 
maximum. For rotating blades during operation (at lower wind speeds), the 
random process models can show notable bias: roughly 10% for the 4-moment 
models, and appreciably more if only 3 moments are used (Figures 12-15). 
In contrast, the random peak models remain consistently accurate, and con- 
sistently beneficial (i.e., in reducing uncertainty) in all cases. This suggests 
that by modelling not the entire time history but rather its set of peaks, 
enough information about the rotating nature of the load process is retained 
to permit accurate estimates of extreme behavior. 
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45m/sec, Mean Wind Speed; Simulation 1 
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Figure 1: Simulated wind and blade loads; V=45m/sec. 
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20m/sec, Mean Wind Speed; Simulation 1 
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Figure 2: Simulated wind and blade loads; y=20m/sec. 
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Correlation Between Succsesive Flap(Beam) Bending Peaks 
45m/seo Mean Wind Speed, Blades Parked; rho= 0.2092 
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Figure 3: Correlation between successive flap response peaks; V^öm/sec. 

Correlation Between Successive Edge(Chord) Bending Peaks 
45m/sec Mean Wind Speed, Blades Parked; rho= 0.2843 

2.5 3 
Peak(x) 

Figure 4: Correlation between successive edge response peaks; V=45m/sec. 
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Correlation Between Succsesive Flap(Beam) Bending Peaks 
20m/sec Mean Wind Speed, Blades Operating; rho= 0.1526 
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Figure 5: Correlation between successive flap response peaks; l/=20m/sec. 

Correlation Between Successive Edge(Chord) Bending Peaks 
20m/sec Mean Wind Speed, Blades Operating; rho= -0.0070 
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Figure 6: Correlation between successive edge response peaks; Vr=20m/sec. 
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45m/sec Mean Wind Speed; Blades Parked, Simulation 1 
Quadratic Weibull Model for Single 10-minute History 
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Figure  7:    Probability distribution  of response  peaks   (Weibull  scale); 
F=45m/sec. 
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20m/sec Mean Wind Speed; Blades Operating, Simulation 1 
Quadratic Weibull Model for Single 10-minute History 
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Figure  8:     Probability  distribution  of response  peaks   (Weibull  scale); 
F=20m/sec. 
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20m/sec Mean Wind Speed; Blades Operating, Simulation 1 
Shifted Quadratic Weibull Model of Edge Bending with Shift = 1.5 for Single 10-mintue History 
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Figure 9:    Probability distribution of shifted response peaks above 1.5 
(Weibull scale); F=20m/sec. 
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Bias 
Mean Wind Speed, 45m/sec; Blades Parked 
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Figure 10: Bias = p/Z, where /Z is the average estimate of the mean 10-min 
maximum over the 100 simulations. Z is the average of the observed 10-min 
maxima. The wind speed is V=45m/sec. 
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Sigma Reduction 
Mean Wind Speed, 45m/sec; Blades Parked 
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Figure 11: Sigma ratio o^oz between estimated and observed 10-min maxes; 
F=45m/sec. 
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Figure 12: Bias = p/Z, where ß is the average estimate of the mean 10-min 
maximum over the 100 simulations. Z is the average of the observed 10-min 
maxima. The wind speed is F=20m/2sec. 
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Figure 13: Sigma ratio a^/az between estimated and observed 10-min maxes; 
F=20m/sec. 
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Bias 
Mean Wind Speed, 14m/sec; Blades Operating 
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Figure 14: Bias = ß/Z, where ~ß is the average estimate of the mean 10-min 
maximum over the 100 simulations. Z is the average of the observed 10-min 
maxima. The wind speed is V=14m/sec. 
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Figure 15: Sigma ratio a^joz between estimated and observed 10-min maxes; 
F=14m/sec. 
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Raw 
Data 

4m-Hermite 
Prediction 

3m-Hermite 
Prediction 

Peak Prediction 
Unshifted 

Peak Prediction 
Shift = 1.5 

20m/sec Operating 
Edge 
Bending 

Mean StdDev Mean StdDev Mean StdDev Mean StdDev Mean StdDev 

3.326 0.164 3.008 0.015 4.388 0.017 3.392 0.052 3.289 0.088 
Flap 
Bending 5.092 0.494 5.524 0.327 4.517 0.121 5.044 0.241 — 

14m/sec Operating 
Edge 
Bending 2.884 0.112 2.783 0.010 4.244 0.011 2.876 0.060 2.878 . 0.073 
Flap 
Bending 3.987 0.330 4.411 0.238 3.540 0.098 3.978 0.182     

45m/sec Parked 
Edge 
Bending 4.265 0.293 4.392 0.159 4.319 0.074 4.234 0.102 
Flap 
Bending 20.000 1.577 20.082 1.333 19.910 0.618 20.330 0.739 ... ... 

Raw 
Data 

4m-Hermite 
Prediction 

3m-Hermite 
Prediction 

Peak Prediction 
Unshifted 

Peak Prediction 
Shift =1.5 

20m/sec Operating 
Edge 
Bending 

Mean StdDev Bias Siq. Rdux Bias Sig. Rdux Bias Sig. Rdux Bias Sig. Rdux 

3.326 0.164 0.904 0.092 1.319 0.103 1.020 0.318 0.989 0.538 
Flap 
Bending 5.092 0.494 1.085 0.660 0.887 0.245 0.991 0.487     

14 m/sec Operating 
Edge 
Bending 2.884 0.112 0.965 0.092 1.472 0.100 0.997 0.538 0.998 0.651 
Flap 
Bending 3.987 0.330 1.106 0.721 0.888 0.297 0.998 0.550     

45m/sec Parked 
Edge 
Bending 4.265 0.293 1.030 0.543 1.013 0.253 0.993 0.347 
Flap 
Bending 20.000 1.577 1.004 0.845 0.996 0.392 1.017 0.469 ... — 

Table 1: Numerical results, observed and estimated 10-minute extremes. 
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4    Input Format and Wind Turbine Example 

We will illustrate the use of MaxFits here through a simple example, drawn 
from among the wind turbine simulation cases discussed previously. In par- 
ticular, we consider here the flap bending response of a parked wind turbine 
blade. The input is discussed in the following paragraph. The output is dis- 
cussed in the next section. The data set analyzed here contains ten minutes 
of response data for a parked wind turbine blade subjected to a simulated 
Gaussian wind field with 45m/s mean wind speed and 15% turbulence inten- 
sity (C.O.V. = .15). 

The input file is stored in wind.dat. This file corresponds to the flapwise 
bending time series shown in Figure 1. 

4.1    Runtime Input: Batch Mode 

We desire the following situation: 

1. Results should be written to a file named wind.out 

2. Distribution results are to be written for 20 probability values ranging 
from 1/20 to 1-1/20. 

3. The time history data is stored in the file wind.dat 

4. The user desires to fit a shifted quadratic Weibull distribution (IDIST=9) 
to these data. IDIST=8 should only be used if it is certain the mean of 
the underlying process equals 0. If this is not the case the fit should be 
shifted over the mean, or any other threshold if preferred. ( Although 
it is inconvenient for the user to have to determine the mean of the 
process, there is no other method. The only way MaxFits can deter- 
mine the mean is if the entire process is input. In this case if the user 
specifies a value of 7.896 for XLOW, MaxFits will use the mean of the 
process as threshold.) 
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5. The user desires to determine the accuracy of the results by producing 
100 bootstrap estimates of all the predictions. 

The type of input provided is specified by the INSWITCH variable.  The 
available options are: 

1. The entire process .   . 

2. The local peaks of the process 

3. The global peaks of the process (the number of global peaks for equal 
time segments is specified with the NSEG variable). 

The type of data we wish to use for the analysis is specified with the 
DATASWITCH variable, which has the same options as the INSWITCH variable. 

The desired output can be selected with the OUTSWITCH variable, for which 
the user can select the following values: 

1. The user inputs a lower limit for the input variable, an upper limit and 
a step size (XMIN, XMAX, DX). MaxFits will output the probability of 
exceedence for each specified response. Bootstrapping will give a mean 
and standard deviation for the response. Note: Selecting XMIN too low 
or XMAX too high may cause underflow errors. Also units are free, as 
long as they are consistent. 

2. The user inputs specific response values, by first specifying the number 
of inputs (NOUTPTS), and then the response for which the probability 
of exceedence win be calculated. Bootstrapping will give a mean and 
standard deviation for the response. 

3. MaxFits determines the entire distribution of the probability of excee- 
dence for a specified number of points. Probabilities will range from 
1/N to 1-1/N. Bootstrapping will give a mean and standard deviation 
for the probability of exceedence. 
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4. The user inputs specific probability levels, by first specifying the num- 
bers of inputs (NOUTPTS), and then the probability of exceedence for 
which the associated response will be calculated. Bootstrapping will 
give a mean and standard deviation for the probability of exceedence. 

The previous options will cause the input lines to differ, depending on 
the output specified on the second line of the batch file. Examples of input 
for all 4 possible output options are given. The batch file for the example is 
named wind, in, and contains the following input lines: 

wind.out 
12 3 

20 
10. 10. 
100 
wind.dat 

9 
7.896 

Name of output file 
INSWITCH,DATASWITCH, OUTSWITCH 
N, number and range of probability levels, 1/N, 1-1/N 

Duration of input file and target period 
Number of bootstrap samples 

Name of input file 
Distribution type (IDIST), see Section 1.6 for definitions 

XL0W, shift only for shifted distributions 

Alternatively the following batch files can be used for 0UT0PT = 1,2,4 
respectively: 

wind.out 
12 1 
8.   20.   1. 
10.   10. 
100 
wind.dat 
9 
7.896 

Name of output file 
INSWITCH,DATASWITCH,   OUTSWITCH 
XMIN,  XMAX,  DX, 
Duration of input file and target period 

Number of bootstrap samples 

Name of input file 
Distribution type (IDIST), see Section 1.6 for definitions 

XL0W, shift only for shifted distributions 

wind.out 
1 2 2 

Name of output file 
INSWITCH,DATASWITCH, OUTSWITCH 
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15. 

20. 

Xnoutpts 

10. 10. 

100 

wind.dat 
9 
7.896 

NOUTPTS, no. of exceedence probabilities to be calculated 

First fractile for which P will be calculated 

Second extreme for which P will be calculated 

Third extreme for which P will be calculated 
Nth extreme for which MaxFits will calculated the probabili 

of exceedence 
Duration of input file and target period 

Number of bootstrap samples 

Name of input file 
Distribution type (IDIST), see Section 1.6 for definitions 
XL0W, shift only for shifted distributions 

wind.out 
1 2 4 

3 

0.01 

0.001 
0.0001 
Pnout,pto 

10. 10. 
100 
wind.dat 
9 
7.896 

Name of output file 
INSWITCH,DATASWITCH, OUTSWITCH 
NOUTPTS, no. of probabilities for which fractiles will be 

calculated 
First probability of exceedence 
Second probability of exceedence 

Third probability of exceedence 
Nth probability of exceedence for which MaxFits will 

calculate the fractile 
Duration of input file and target period 
Number of bootstrap samples 
Name of input file 
Distribution type (IDIST), see Section 1.6 for definitions 

XL0W, shift only for shifted distributions 

By typing the following command: 

maxfits < wind.in 

a file named wind. out will be written whose content is discussed in the next 
section. During the execution the user will be prompted for terminal inputs. 
These can simply be ignored (or directed toward the null device) in this batch 
mode operation. 
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4.2    Runtime Input: Interactive Mode 

If the user simply types MaxFits, he or she will prompted for each input, 
which is the same as what is described in the previous paragraph. The 
prompts are accompanied by interactive explanations that will list the options 
the user has. The interactive mode may be particularly useful for first-time 
users. (The text with the input prompts is written to the logical unit IOERR, 
which is set to 0 in the driver program. The user can reset this if necessary.) 

The following is a screen dump of the terminal input and the user's re- 
sponse. Lines beginning with ">" are input prompts generated by the pro- 
gram. Other lines are the user's response, which should match the input 
given in the first batch file in the previous paragraph. 

> ** ENTER FILENAME WHERE OUTPUT WILL BE WRITTEN ** 

> ENTER OUTPUT FILENAME: 

wind.out 

> ** ENTER THE TYPE OF DATA IN THE DATA FILE, 
> THE TYPE OF DATA TO BE USED FOR THE ANALYSIS, 
> AND THE OUTPUT SWITCH: 

> INSWITCH/DATASWITCH =    1 ... POINTS OF THE PROCESS 
> INSWITCH/DATASWITCH =    2 ... LOCAL PEAKS 
> INSWITCH/DATASWITCH =    3 ... GLOBAL PEAKS 
> DATASWITCH >= INSWITCH 

> OUTSWITCH = 1 ...  ENTER XMIN,XMAX,DX -> P1..PN 
> OUTSWITCH = 2 ...   ENTER X1,X2,...,XN -> P1..PN 
> OUTSWITCH = 3 ...  ENTER NP -> XI..PN 
> OUTSWITCH = 4 ...  ENTER P1,P2,...,PN -> XI..PN 

> ENTER INSWITCH,DATASWITCH,OUTSWITCH: 

1 2 3 
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> ** ENTER NUMBER OF PROBABILITIES FOR THE DISTRIBUTION OF XMAX 

20 

> ** ENTER THE DURATION OF THE DATA FILE 
> AND THE TARGET DURATION FOR THE PREDICTION: 

> ASSURE TTARGET IS SUFFICIENTLY LONG 

> TO CONTAIN AT LEAST ONE CYCLE 

> Ttot.Ttarget: 
10. 10. 

> ** ENTER THE NUMBER OF BOOTSTRAP SAMPLES TO BE TAKEN: 

> FOR NO BOOTSTRAPPING ENTER bsN=0 
> bsN: 
100 

> ** ENTER FILENAME WHERE DATA ARE STORED, 

> ENTER INPUT FILENAME: 

wind.dat 

> ** ENTER IDIST =INDEX OF DISTRIBUTION TYPE TO BE FIT 

>   CURRENT OPTIONS: 
> IDIST = 1 
> IDIST = 2 
> IDIST = 3 
> IDIST = 4 

> IDIST = 5 

> IDIST = 6 
> IDIST = 7 

> IDIST = 8 

> IDIST = 9 

> IDIST = 10 

> IDIST = 11 

>      ENTER IDIST: 

NORMAL 
LOGNORMAL 
EXPONENTIAL 
WEIBULL 
GUMBEL 
SHIFTED EXPONENTIAL 

SHIFTED WEIBULL 
QUADRATIC WEIBULL 
SHIFTED QUADRATIC WEIBULL 

HERMITE (PROCESS) 

HERMITE (PEAKS) 
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> YOU HAVE SELECTED A SHIFTED DISTRIBUTION MODEL 

> ** ENTER XLOW =LOWER BOUND THRESHOLD, BELOW WHICH 
> ALL DATA WILL BE IGNORED 

9 
> ENTER XLOW   : 
7.896 

4.3    Output Format and Wind Turbine Example 

Below is the output file wind, out that resulted from the manual input listed 
in the previous paragraph. The format is the same for all output options. 
Note that the output is formatted such that it can be directly plotted using 
gnuplot. The lines starting with # will be treated as comments by gnuplot. 

The first section echoes the input, and how much data was actually used 
for the analysis. 

The second section provides summary statistics for the data file consid- 
ered. These include on the first line the sample moments from the data, and 
on the second line the standard deviation of the bootstrap predictions. 

The third section gives the moments that are implied by the fitted distri- 
bution in the same way as they are given for the original data. 

The fourth section reports the distribution parameters. The standard 
deviation of the bootstrap predictions is given on the second the. The def- 
inition of the distribution parameters is given in Appendix A of the fits 
manual (Manuel et al, 1999). 

The fifth section gives the mean and standard deviation of the distribution 
of the extreme value in the target period. The bootstrap standard deviations 
of these values are reported on the second line. 
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The last section reports the actual distribution of the extreme value in 
the target period. The first column reports the fractiles that were calculated 
from the specified probability levels in the input. The second column reports 
the bootstrap standard deviation of each predicted fractile, and indicates 
the accuracy of the prediction. The third column reports the probability 
levels that were input by the user. The fourth column reports the standard 
deviations of, in this case, the 100 predictions of the probability levels. As 
the probability levels were input here this column consists of zeros. 

# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 
# 

# 
# 
# 
# 
# 

# 
# 
# 
# 
# 

RESULTS FOR 
TIME DURATION OF DATABASE 

CONTAINING 
TARGET TIME DURATION 

DIST TYPE SELECTED 
FITTED TO 

NO. OF BOOTSTRAP SAMPLES 

wind.dat 
10.00 
15000 POINTS OF THE PROCESS 

10.00 
SHIFTED QUADRATIC W 

1041 LOCAL PEAKS 

100 

** NOTE: MOMENTS, DIST PARMS APPLY HERE TO X-XL0W; XL0W= 0.7896E+01 

MOMENTS FROM SAMPLE DATA   ( MEAN, SIGMA, SKEWNESS, KURT0SIS) 
data:   0.2012E+01 0.1806E+01 0.1537E+01 0.5965E+01 
stdv:   0.5404E-01 0.6229E-01 0.1127E+00 0.6584E+00 

MOMENTS FROM FITTED DIST   ( MEAN, SIGMA, SKEWNESS, KURT0SIS) 

data:  0.2012E+01 0.1807E+01 0.1536E+01 0.6179E+01 
stdv:  0.5403E-01 0.6224E-01 0.1129E+00 0.6058E+00 

DISTRIBUTION PARAMETERS    (SEE DOCUMENTATION FOR DEFINITION) 
data:  -0.7121E-01 0.2166E+01 0.1041E+01 0.8963E+00 -0.2372E-01 
stdv:  0.4817E-01 0.1350E+00 0.7607E-02 0.2072E-01 0.1989E-01 
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# 
# 
# 
# 
# 
# 
# 
# 

data: 
stdv: 

0.1772E+02 
0.1807E+02 
0.1833E+02 
0.1855E+02 
0.1874E+02 
0.1892E+02 
0.1910E+02 
0.1927E+02 
0.1944E+02 
0.1961E+02 
0.1979E+02 
0.1998E+02 
0.2018E+02 
0.2040E+02 
0.2063E+02 
0.2090E+02 
0.2122E+02 
0.2161E+02 
0.2214E+02 
0.2301E+02 

MEAN 

19.97 
0.63 

STDV 
1.57 
0.18 

(of MAX response in Ttarget) 

stdv(X) 
0.4228E+00 
0.4516E+00 
0.4732E+00 
0.4919E+00 
0.5090E+00 
0.5253E+00 
0.5412E+00 
0.5572E+00 
0.5734E+00 
0.5901E+00 
0.6076E+00 
0.6262E+00 
0.6463E+00 
0.6684E+00 
0.6933E+00 
0.7221E+00 
0.7568E+00 
0.8009E+00 
0.8627E+00 
0.9687E+00 

1-Fxmax 
0.9524E+00 
0.9048E+00 
0.8571E+00 
0.8095E+00 
0.7619E+00 
0.7143E+00 
0.6667E+00 
0.6190E+00 
0.5714E+00 
0.5238E+00 
0.4762E+00 
0.4286E+00 
0.3810E+00 
0.3333E+00 
0.2857E+00 
0.2381E+00 
0.1905E+00 
0.1429E+00 
0.9524E-01 
0.4762E-01 

stdv(l-Fm) 
0.0000E+00 
0.0000E+00 
0.0000E+00 
0.0000E+00 
0.0000E+00 
0.0000E+00 
0.0000E+00 
0.0000E+00 
0.0000E+00 
0.0000E+00 
0.0000E+00 
0.0000E+00 
0.0000E+00 
0.0000E+00 
0.0000E+00 
0.0000E+00 
0.0000E+00 
0.0000E+00 
0.0000E+00 
0.0000E+00 

As the quadratic Weibull distribution uses only three parameters, only the 
first three statistical moments can be reproduced by the fitted distribution. 

The kurtosis will differ somewhat. 

The original data, and the quadratic Weibull fit, are shown in Figure 7. 
Figure 16 shows the distribution of the ten-minute extreme flap bending re- 
sponse produced by MaxFits, and lines reflecting this value plus and minus 
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two bootstrap standard deviations. These would reflect 95% confidence in- 
tervals if we assume the distribution of our predicted fractiles to be normally 
distributed. 
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Distribution of 10-Minute Extremes 
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Figure 16:  Predicted distribution of 10-minute extremes, with ±2a confi- 
dence bands. 
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